Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20241072

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Flavonoids/pharmacology , Endopeptidases , Antiviral Agents/pharmacology
2.
Polycyclic Aromatic Compounds ; : 1-24, 2023.
Article in English | Academic Search Complete | ID: covidwho-2321942

ABSTRACT

Imine derivatives are widely used in medicine for the treatment of several diseases causing human infections;we examined Schiff's bases derivatives: 2-[(3-methylphenyl) azomethine] phenol (L1), 2-[(3-chlorophenyl) azomethine] phenol (L2) and 2-[(3-nitrophenyl) azomethine] phenol (L3) against three human pathogenic bacterial strains according to the disk diffusion test. In addition, to revealing the importances of the in silico study of these derivatives, in particular the molecular docking which is based on the protein structures: the main protease 3CL of SARS-CoV-2 and the aminopeptidase of the M1 family. Also, a molecular dynamics simulation was performed to examine the structural stability of the best docked conformation. The evaluation of the global reactivity parameters of the molecular system of Schiff base derivatives was applied by the DFT method with the hybrid functional (B3LYP)/6-31G (d) basis set. The results of the antibacterial activity showed a strong activity in the presence of the L3 ligand against Escherichia coli (ATCC 25922) with a diameter inhibition zone equal to 11 ± 0.61 mm. Molecular docking shows that the L3 ligand formed with protein targets more stable complexes by predicting interesting interactions: hydrogen, hydrophobic and electrostatic bonds with the residues of these targets 3CLpro and PfA-M1. Further, molecular dynamics simulations confirm a strong energy contribution with these interactions. Therefore, suggesting that our ligands could contribute to the development of anti-coronavirus-2 and anti-malarial drug properties. [ FROM AUTHOR] Copyright of Polycyclic Aromatic Compounds is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Chinese Journal of New Drugs ; 32(1):1-7, 2023.
Article in Chinese | EMBASE | ID: covidwho-2315756

ABSTRACT

3CL protease inhibitors has become the focus of the current research on anti-coronavirus drugs. The analysis of the patent information will help the research and innovation of such anti-coronavirus drugs. This paper analyzes the application trends of anti-coronavirus 3CL protease inhibitor-related patents, the distribution of regional status of patents, important applicants, patented technology themes, progress of key drug development and other factors. We also analyze the development of related patent technologies and aim to help domestic pharmaceutical enterprises carry out innovation and complete the strategic layout.Copyright © 2023 Chinese Journal of New Drugs Co. Ltd.. All rights reserved.

4.
Emerg Microbes Infect ; 12(1): 2211688, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2312953

ABSTRACT

ABSTRACTThe main protease (3-chymotrypsin-like protease, 3CLpro) of SARS-CoV-2 has become a focus of anti-coronavirus research. Despite efforts, drug development targeting 3CLpro has been hampered by limitations in the currently available activity assays. Additionally, the emergence of 3CLpro mutations in circulating SARS-CoV-2 variants has raised concerns about potential resistance. Both emphasize the need for a more reliable, sensitive, and facile 3CLpro assay. Here, we report an orthogonal dual reporter-based gain-of-signal assay for measuring 3CLpro activity in living cells. It builds on the finding that 3CLpro induces cytotoxicity and reporter expression suppression, which can be rescued by its inhibitor or mutation. This assay circumvents most limitations in previously reported assays, especially false positives caused by nonspecific compounds and signal interference from test compounds. It is also convenient and robust for high throughput screening of compounds and comparing the drug susceptibilities of mutants. Using this assay, we screened 1789 compounds, including natural products and protease inhibitors, with 45 compounds that have been reported to inhibit SARS-CoV-2 3CLpro among them. Except for the approved drug PF-07321332, only five of these inhibit 3CLpro in our assays: GC376; PF-00835231; S-217622; Boceprevir; and Z-FA-FMK. The susceptibilities of seven 3CLpro mutants prevalent in circulating variants to PF-07321332, S-217622, and GC376 were also assessed. Three mutants were identified as being less susceptible to PF-07321322 (P132H) and S-217622 (G15S, T21I). This assay should greatly facilitate the development of novel 3CLpro-targeted drugs and the monitoring of the susceptibility of emerging SARS-CoV-2 variants to 3CLpro inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mutation , Peptide Hydrolases , Antiviral Agents/pharmacology
5.
Bioorg Med Chem ; 87: 117316, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2320928

ABSTRACT

In this paper, a series of peptidomimetic SARS-CoV-2 3CL protease inhibitors with new P2 and P4 positions were synthesized and evaluated. Among these compounds, 1a and 2b exhibited obvious 3CLpro inhibitory activities with IC50 of 18.06 nM and 22.42 nM, respectively. 1a and 2b also showed excellent antiviral activities against SARS-CoV-2 in vitro with EC50 of 313.0 nM and 170.2 nM, respectively, the antiviral activities of 1a and 2b were 2- and 4-fold better than that of nirmatrelvir, respectively. In vitro studies revealed that these two compounds had no significant cytotoxicity. Further metabolic stability tests and pharmacokinetic studies showed that the metabolic stability of 1a and 2b in liver microsomes was significantly improved, and 2b had similar pharmacokinetic parameters to that of nirmatrelvir in mice.


Subject(s)
COVID-19 , Peptidomimetics , Animals , Mice , Protease Inhibitors/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2 , Nitriles , Antiviral Agents/pharmacology
6.
Chem Pharm Bull (Tokyo) ; 71(5): 360-367, 2023.
Article in English | MEDLINE | ID: covidwho-2317290

ABSTRACT

Computational screening is one of the fundamental techniques in drug discovery. Each compound in a chemical database is bound to the target protein in virtual, and candidate compounds are selected from the binding scores. In this work, we carried out combinational computation of docking simulation to generate binding poses and molecular mechanics calculation to estimate binding scores. The coronavirus infectious disease has spread worldwide, and effective chemotherapy is strongly required. The viral 3-chymotrypsin-like (3CL) protease is a good target of low molecular-weight inhibitors. Hence, computational screening was performed to search for inhibitory compounds acting on the 3CL protease. As a preliminary assessment of the performance of this approach, we used 51 compounds for which inhibitory activity had already been confirmed. Docking simulations and molecular mechanics calculations were performed to evaluate binding scores. The preliminary evaluation suggested that our approach successfully selected the inhibitory compounds identified by the experiments. The same approach was applied to 8820 compounds in a database consisting of approved and investigational chemicals. Hence, docking simulations, molecular mechanics calculations, and re-evaluation of binding scores including solvation effects were performed, and the top 200 poses were selected as candidates for experimental assays. Consequently, 25 compounds were chosen for in vitro measurement of the enzymatic inhibitory activity. From the enzymatic assay, 5 compounds were identified to have inhibitory activities against the 3CL protease. The present work demonstrated the feasibility of a combination of docking simulation and molecular mechanics calculation for practical use in computational virtual screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
7.
J Biomol Struct Dyn ; : 1-20, 2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-2317279

ABSTRACT

Coronavirus disease 19 (COVID19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, several countries are at risk of the pandemic caused by this virus. In the absence of any vaccine or virus-specific antiviral treatments, the need is to fast track search for potential drug candidates to combat the virus. Though there are known drugs that are being repurposed to fight against the SARS-CoV-2, there is a requirement for the virus-specific drugs at the earliest. One of the main drug targets of SARS-CoV-2 is an essential non-structural protein, 3CL protease, critical for the life cycle of the virus. We have used molecular docking studies to screen a chemically diverse set of small molecules to identify potential drug candidates to target this protein. Of the 22,630 molecules from varied small molecule libraries, based on the binding affinities and physicochemical properties, we finalized 30 molecules to be potential drug candidates. Eight of these molecules bind in a manner allowing for the scope of a nearly orthogonal backside nucleophilic attack on their suitably placed electrophilic carbonyl groups by the thiol group of cysteine residue 145, while remaining inside a 4 Ǻ distance range. It is interesting since carbonyl groups are known to be attacked in a similar fashion by external nucleophiles and can be relevant when considering these molecules as potential mechanism-based irreversible inhibitors of the 3CLPro. Further, ADMET analysis and Molecular dynamics simulations and available bioactive assays led to the identification of three molecules with high potential to be explored as drug candidates/lead molecules to target 3CLPro of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

8.
Chinese Journal of New Drugs ; 32(1):1-7, 2023.
Article in Chinese | EMBASE | ID: covidwho-2297220

ABSTRACT

3CL protease inhibitors has become the focus of the current research on anti-coronavirus drugs. The analysis of the patent information will help the research and innovation of such anti-coronavirus drugs. This paper analyzes the application trends of anti-coronavirus 3CL protease inhibitor-related patents, the distribution of regional status of patents, important applicants, patented technology themes, progress of key drug development and other factors. We also analyze the development of related patent technologies and aim to help domestic pharmaceutical enterprises carry out innovation and complete the strategic layout.Copyright © 2023 Chinese Journal of New Drugs Co. Ltd.. All rights reserved.

9.
J Biomol Struct Dyn ; : 1-15, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-2255996

ABSTRACT

The 3CL Protease of severe acute respiratory syndrome coronavirus (SARS-CoV), responsible for viral replication, has emerged as an essential target for designing anti-coronaviral inhibitors in drug discovery. In recent years, small molecule and peptidomimetic inhibitors have been used to target the inhibition of SARS-CoV 3CL Protease. In this study, we have developed 2D and 3D Quantitative structure activity relationship (QSAR) models on 3CL protease inhibitors with good predictive capability to propose inhibitors with improved affinities. Based on the 3 D contour maps, three new inhibitors were designed in silico, which were further subjected to molecular docking to explore their binding modes. The newly designed compounds showed improved interaction energies toward SARS-CoV-3CLPro due to additional interactions with the active site residues. The molecular docking studies of the most potent compounds revealed specific interactions with Glu 166 and Cys 145. Furthermore, absorption, distribution, metabolism, elimination (ADME) and drug-likeness evaluation revealed improved pharmacokinetic properties for these compounds. The molecular dynamics simulations confirmed the stability of the interactions identified by docking. The results presented would guide the development of new 3CL protease inhibitors with improved affinities in the future.Communicated by Ramaswamy H. Sarma.

10.
Journal of Pharmaceutical Negative Results ; 13(3):865-868, 2022.
Article in English | EMBASE | ID: covidwho-2279142

ABSTRACT

SARS COV2 is one of the most destructive pandemics the world has faced and led to extreme economic losses. For its clinical therapy, SARS-COV-2 3CL Protease (3CLpro) is considered a target because of its crucial role in replication. Inhibition of this 3CLpro can lead to a decrease in viral load and infection. Different studies used various compounds and tested their inhibiting activity. Among them, flavonoids, serine derivatives, Chalcones, and alpha-keto amides were proven to have inhibitory effects. Many in-vitro tests were done to check the binding and inhibition abilities of such compounds. In vivo, some studies are done, but more is needed to prove this discovery. As far as research is concerned, therapeutic drugs against COVID-19 can be made by using such inhibitors. More in vivo studies and animal model experimentation should be done to confirm the findings.Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

11.
J Med Virol ; 95(3): e28618, 2023 03.
Article in English | MEDLINE | ID: covidwho-2268193

ABSTRACT

Coronaviruses target ciliate cells causing the loss of cilia, acute rhinorrheas, and other ciliopathies. The loss of ciliary function may help the virus infect, replicate, and spread. However, the molecular mechanisms by which coronaviruses cause ciliary defects are still unclear. Herein we demonstrate how coronavirus infection and severe acute respiratory syndrome coronavirus2 3CL protease induce cilia dysfunction by targeting a host protein septin that is required for the structure and function of cilia. Further, we demonstrate that coronaviruses and 3CL protease lead to the cleavage of several septin proteins (SEPT2, -6, and -9), producing cleaved obstructive fragments. Furthermore, ectopic expression of cleaved SEPT2 fragments shows defective ciliogenesis, disoriented septin filaments, and ablated Sonic Hedgehog (SHH) signaling in a protease activity-dependent manner. We present that the 3CLpro inhibitors are potent and prevent abnormal ciliary structures and SHH signaling. These results provide useful insights into the general mechanisms underlying ciliary defects caused by coronaviruses, which, in turn, facilitate virus spread and prove that preclinical and clinical 3CL protease inhibitors may prove useful as therapeutics for treating ciliary defects of coronaviruses.


Subject(s)
COVID-19 , Septins , Humans , Septins/genetics , Septins/metabolism , Hedgehog Proteins/metabolism , Peptide Hydrolases/metabolism , Signal Transduction , Endopeptidases/metabolism , Protease Inhibitors/therapeutic use
12.
Biomed Pharmacother ; 161: 114481, 2023 May.
Article in English | MEDLINE | ID: covidwho-2254896

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to pose threats to public health. The clinical manifestations of lung pathology in COVID-19 patients include sustained inflammation and pulmonary fibrosis. The macrocyclic diterpenoid ovatodiolide (OVA) has been reported to have anti-inflammatory, anti-cancer, anti-allergic, and analgesic activities. Here, we investigated the pharmacological mechanism of OVA in suppressing SARS-CoV-2 infection and pulmonary fibrosis in vitro and in vivo. Our results revealed that OVA was an effective SARS-CoV-2 3CLpro inhibitor and showed remarkable inhibitory activity against SARS-CoV-2 infection. On the other hand, OVA ameliorated pulmonary fibrosis in bleomycin (BLM)-induced mice, reducing inflammatory cell infiltration and collagen deposition in the lung. OVA decreased the levels of pulmonary hydroxyproline and myeloperoxidase, as well as lung and serum TNF-ɑ, IL-1ß, IL-6, and TGF-ß in BLM-induced pulmonary fibrotic mice. Meanwhile, OVA reduced the migration and fibroblast-to-myofibroblast conversion of TGF-ß1-induced fibrotic human lung fibroblasts. Consistently, OVA downregulated TGF-ß/TßRs signaling. In computational analysis, OVA resembles the chemical structures of the kinase inhibitors TßRI and TßRII and was shown to interact with the key pharmacophores and putative ATP-binding domains of TßRI and TßRII, showing the potential of OVA as an inhibitor of TßRI and TßRII kinase. In conclusion, the dual function of OVA highlights its potential for not only fighting SARS-CoV-2 infection but also managing injury-induced pulmonary fibrosis.


Subject(s)
COVID-19 , Diterpenes , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Lung , Diterpenes/adverse effects , Bleomycin/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts , Signal Transduction
13.
Adv Sci (Weinh) ; 10(13): e2207098, 2023 05.
Article in English | MEDLINE | ID: covidwho-2283513

ABSTRACT

Antivirals that can combat coronaviruses, including SARS-CoV-2 and associated mutants, are urgently needed but lacking. Simultaneously targeting the viral physical structure and replication cycle can endow antivirals with sustainable and broad-spectrum anti-coronavirus efficacy, which is difficult to achieve using a single small-molecule antiviral. Thus, a library of nanomaterials on GX_P2V, a SARS-CoV-2-like coronavirus of pangolin origin, is screened and a surface-functionalized gold nanocluster (TMA-GNC) is identified as the top hit. TMA-GNC inhibits transcription- and replication-competent SARS-CoV-2 virus-like particles and all tested pseudoviruses of SARS-CoV-2 variants. TMA-GNC prevents viral dissemination through destroying membrane integrity physically to enable a virucidal effect, interfering with viral replication by inactivating 3CL protease and priming the innate immune system against coronavirus infection. TMA-GNC exhibits biocompatibility and significantly reduces viral titers, inflammation, and pathological injury in lungs and tracheas of GX_P2V-infected hamsters. TMA-GNC may have a role in controlling the COVID-19 pandemic and inhibiting future emerging coronaviruses or variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Endopeptidases
14.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2253021

ABSTRACT

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Coronavirus 3C Proteases , Antiviral Agents/chemistry
15.
Front Pharmacol ; 13: 1096853, 2022.
Article in English | MEDLINE | ID: covidwho-2229475

ABSTRACT

Background: Quercetin, a natural polyphenol with demonstrated broad-spectrum antiviral, anti-inflammatory, and antioxidant properties, has been proposed as an adjuvant for early-stage coronavirus disease 2019 (COVID-19) infection. Objective: To explore the possible therapeutic effect of quercetin in outpatients with early-stage mild to moderate symptoms of COVID-19. Methods: This was an open-label randomized controlled clinical trial conducted at the department of medicine, King Edward Medical University, Lahore, PK. Patients were randomized to receive either standard of care (SC) plus an oral quercetin supplement (500 mg Quercetin Phytosome®, 1st week, TDS: 2nd week, BDS) (n = 50, quercetin group) or SC alone (n = 50, control group). Results: After one week of treatment, patients in the quercetin group showed a speedy recovery from COVID-19 as compared to the control group, i.e., 34 patients (vs. 12 in the control group) tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (p = 0.0004), and 26 patients (vs. 12 in the control group) had their COVID-19-associated acute symptoms resolved (p = 0.0051). Patients in the quercetin group also showed a significant fall in the serum lactate dehydrogenase (LDH) mean values i.e., from 406.56 ± 183.92 to 257.74 ± 110.73 U/L, p = 0.0001. Quercetin was well-tolerated by all the 50 patients, and no side effects were reported. Conclusion: Our results, suggest the possible therapeutic role of quercetin in early-stage COVID-19, including speedy clearance of SARS-CoV-2, early resolution of the acute symptoms and modulation of the host's hyperinflammatory response. Clinical Trial Registration: clinicaltrials.gov, identifier NCT04861298.

16.
Molecules ; 28(3)2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2200548

ABSTRACT

The transmission and infectivity of COVID-19 have caused a pandemic that has lasted for several years. This is due to the constantly changing variants and subvariants that have evolved rapidly from SARS-CoV-2. To discover drugs with therapeutic potential for COVID-19, we focused on the 3CL protease (3CLpro) of SARS-CoV-2, which has been proven to be an important target for COVID-19 infection. Computational prediction techniques are quick and accurate enough to facilitate the discovery of drugs against the 3CLpro of SARS-CoV-2. In this paper, we used both ligand-based virtual screening and structure-based virtual screening to screen the traditional Chinese medicine small molecules that have the potential to target the 3CLpro of SARS-CoV-2. MD simulations were used to confirm these results for future in vitro testing. MCCS was then used to calculate the normalized free energy of each ligand and the residue energy contribution. As a result, we found ZINC15676170, ZINC09033700, and ZINC12530139 to be the most promising antiviral therapies against the 3CLpro of SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Molecular Dynamics Simulation , Peptide Hydrolases , Ligands , Medicine, Chinese Traditional , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Endopeptidases , Molecular Docking Simulation , Antiviral Agents/chemistry
17.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2166600

ABSTRACT

COVID-19, derived from SARS-CoV-2, has resulted in millions of deaths and caused unprecedented socioeconomic damage since its outbreak in 2019. Although the vaccines developed against SARS-CoV-2 provide some protection, they have unexpected side effects in some people. Furthermore, new viral mutations reduce the effectiveness of the current vaccines. Thus, there is still an urgent need to develop potent non-vaccine therapeutics against this infectious disease. We recently established a series of detecting platforms to screen a large library of Chinese medicinal herbs and phytochemicals. Here, we reveal that the ethanolic extract of Evodiae Fructus and one of its components, rutaecarpine, showed promising potency in inhibiting the activity of 3C-like (3CL) protease, blocking the entry of the pseudo-typed SARS-CoV-2 (including wild-type and omicron) into cultured cells. In addition, inflammatory responses induced by pseudo-typed SARS-CoV-2 were markedly reduced by Evodiae Fructus extract and rutaecarpine. Together our data indicate that the herbal extract of Evodiae Fructus and rutaecarpine are potent anti-SARS-CoV-2 agents, which might be considered as a treatment against COVID-19 in clinical applications.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Evodia , Humans , SARS-CoV-2 , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology
18.
Microorganisms ; 10(12)2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2123757

ABSTRACT

In this study, we investigated the immune-enhancing and anti-viral effects of germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus SC11 (GRC-SC11) isolated from a salted small octopus. The cordycepin, ß-glucan, and total flavonoid contents increased in GRC after SC11 fermentation. GRC-SC11 inhibits 3CL protease activity in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). GRC-SC11 significantly increased thymus and spleen indices in immunocompromised mice. The rate of splenocyte proliferation was higher in GRC-SC11-treated immunocompromised mice than that in GRC-treated immunocompromised mice in the presence or absence of concanavalin A. In addition, GRC-SC11 increased the phagocytic activity and nitric oxide production in immunocompromised mice. The mRNA expression of interferon-gamma (IFN-γ), interferon-alpha (IFN-α), and interferon-stimulated gene 15 (ISG15) was up-regulated in GRC-SC11 treated RAW 264.7 macrophages, compared to GRC. Our study indicates that GRC-SC11 might be a potential therapeutic agent for immunocompromised patients who are vulnerable to SARS-CoV infection.

19.
International Journal of Applied Pharmaceutics ; 14(6):18-20, 2022.
Article in English | EMBASE | ID: covidwho-2115176

ABSTRACT

The SARS-CoV-2 virus causes coronavirus, and the pandemic has led to efforts to develop appropriate drugs for treatment. Understanding the structure and function of SARS-CoV-2 3CL is crucial in unlocking ways of developing effective drugs. Some studies have described the structure of the protease at the DNA and protein levels. Notably, two important proteases help in the drug development process: PLpro and 3CLpro. The 3CLpro, for instance, is helpful in viral replication alongside transcription. The PL is associated with NsP3, a multi-domain protein part of the viral replication and transcription complex which cleaves peptide bonds at specific sites. In vitro studies have shown that SARS-CoV-2 3CL-protease inhibitors can contribute to antiviral drug development, especially MG-132, boceprevir, telaprevir, and calpain, which are protein inhibitors with lethal dose values appropriate for drug development. In contrast, there are very limited studies in vivo reporting the appropriateness of protease inhibitors in antiviral drug development. Copyright © 2022 The Authors. Published by Innovare Academic Sciences Pvt Ltd.

20.
Romanian Journal of Military Medicine ; 125(3):356-365, 2022.
Article in English | Web of Science | ID: covidwho-2044412

ABSTRACT

The prevalence of coronavirus disease 2019 (COVID-19) is the third registered spillover of an animal coronavirus to humans from the early 21st century. Coronaviruses are important human and animal pathogens. The 2019 novel coronavirus (2019-nCoV) rapidly spreads, resulting in an epidemic throughout China, followed by an increasing number of cases in other countries throughout the world. Recently, a wide range of inhibitors have been introduced for treatment of COVID-19, and also promising vaccines are in late phase of development. Here, we aim to present an overview of recent findings of the biological and clinical aspects of SARS-CoV-2 infection, along with possible treatments and future vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL